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ABSTRACT Vibrio spp. and phytoplankton are naturally abundant in marine environ-
ments. Recent studies have suggested that the co-occurrence of phytoplankton and the
pathogenic bacterium Vibrio parahaemolyticus is due to shared ecological factors, such
as nutrient requirements. We compared these communities at two locations in the
Delaware Inland Bays, representing a site with high anthropogenic inputs (Torquay
Canal) and a less developed area (Sloan Cove). In 2017 to 2018, using light microscopy,
we were able to identify the presence of many bloom-forming algal species, such as
Karlodinium veneficum, Dinophysis acuminata, Heterosigma akashiwo, and Chattonella
subsalsa. Dinoflagellate biomass was higher at Torquay Canal than that at Sloan Cove.
D. acuminata and Chloromorum toxicum were found only at Torquay Canal and were
not observed in Sloan Cove. Most probable number real-time PCR revealed V. parahae-
molyticus and Vibrio vulnificus in environmental samples. The abundance of vibrios and
their virulence genes varied between sites, with a significant association between total
dissolved nitrogen (TDN), PO,~, total dissolved phosphorus (TDP), and pathogenic
markers. A generalized linear model revealed that principal component 1 of environ-
mental factors (temperature, dissolved oxygen, salinity, TDN, PO,~, TDP, NO;:NO,, NO,~,
and NH,*) was the best at detecting total (tlh+) V. parahaemolyticus, suggesting that
they are the prime drivers for the growth and distribution of pathogenic Vibrio spp.

IMPORTANCE Vibrio-associated illnesses have been expanding globally over the past
several decades (A. Newton, M. Kendall, D. J. Vugia, O. L. Henao, and B. E. Mahon, Clin
Infect Dis 54:5391-5395, 2012, https://doi.org/10.1093/cid/cis243). Many studies have
linked this expansion with an increase in global temperature (J. Martinez-Urtaza, B. C.
John, J. Trinanes, and A. DePaola, Food Res Int 43:10, 2010, https://doi.org/10.1016/j
foodres.2010.04.001; L. Vezzulli, R. R. Colwell, and C. Pruzzo, Microb Ecol 65:817-825,
2013, https://doi.org/10.1007/s00248-012-0163-2; R. N. Paranjpye, W. B. Nilsson, M.
Liermann, and E. D. Hilborn, FEMS Microbiol Ecol 91:fivi21, 2015, https://doi.org/10
.1093/femsec/fiv121). Temperature and salinity are the two major factors affecting the
distribution of Vibrio spp. (D. Ceccarelli and R. R. Colwell, Front Microbiol 5:256, 2014,
https://doi.org/10.3389/fmicb.2014.00256). However, Vibrio sp. abundance can also be
affected by nutrient load and marine plankton blooms (V. J. McKenzie and A. R. _ )
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can inform managers, researchers, and oyster growers on factors that can influence
the growth and distribution of pathogenic Vibrio spp. in the Delaware Inland Bays.

KEYWORDS Vibrio, Delaware Inland Bays, mid-Atlantic, MPN-PCR, harmful algal blooms

he Delaware Inland Bays (DIBs) are a collection of saltmarshes, tidal flats, oyster

reefs, saltwater creeks, and shallow open waters. The DIBs are located in the mid-
Atlantic region of the United States, near Rehoboth Beach and Fenwick Island,
Delaware. The watershed consists of ~750 square kilometers of land area draining into
~90 square kilometers of bay and tributaries (1). The intensity and duration of harmful
algal bloom (HAB) events have been increasing in the United States (2, 3), and a similar
pattern has been observed in the DIBs (4-6). These issues have led to concerns regard-
ing potential human exposure to toxins produced by HAB species.

HABs, such as Karlodinium veneficum and Dinophysis sp., have been detected in tribu-
taries near Little Assawoman Bay, Delaware (6). Dinophysis spp. are known to cause diar-
rhetic shellfish poisoning (DSP) via the production of okadaic acid (OA) and its derivatives,
the dinophyistoxins (DTXs), which are lipophilic toxins that accumulate in the fatty tissue
of shellfish (7). Blooms of raphidophytes have also been studied extensively in the DIBs
and have been responsible for fish mortalities (4, 8). Heterosigma akashiwo has been
detected regularly in the DIB, and it has the potential to cause sublethal impacts on the
eastern oyster (8).

Vibrio spp. are naturally occurring Gram-negative marine bacteria that are found in
diverse habitats ranging from coastal to open waters (9). They can survive as free-living
organisms or attached to organic particles and biofilms (10). They are able to degrade
polymeric substrates, such as chitin, plant/algal polysaccharides, and plastic waste (10).
Vibrio can colonize and degrade particulate matter and consequently play an impor-
tant role in chemical transformations, which contributes to cycling of carbon and other
nutrients (11). Studies have suggested that organic nutrients that stimulate algal
blooms of Gymnodinium, Dinophysis, and Ceratium may be the most significant factor
driving interrelationships between Vibrio spp. and phytoplankton (12, 13). In the DIB,
Vibrio spp. have been correlated with particulate matter of >20 um, which includes
phytoplankton, such as diatoms and raphidophytes (14).

A combined abiotic and biotic analysis was performed at two sites in the DIBs, as fol-
lows: one, which is known to be impacted negatively by anthropogenic factors (Torquay
Canal), and another that is in proximity to a proposed aquaculture site (Sloan Cove). At
each location, we (i) analyzed water quality parameters, such as temperature, dissolved ox-
ygen, salinity, and nutrients; (ii) identified and enumerated the HAB species present at
both locations; and (iii) examined the levels of total and pathogenic Vibrio parahaemolyti-
cus and Vibrio vulnificus from collected water. The goal of the study was to determine the
most influential factors in the proliferation of two potentially pathogenic Vibrio species
accounting for environmental factors that may simultaneously influence the development
of algal blooms, so as to inform management decisions for aquaculture efforts.

RESULTS

Comparison of environmental parameters between sampling sites, namely,
temperature, salinity, dissolved oxygen, and nutrients. Abiotic parameters were
measured at two sites in the DIBs (Fig. 1) to establish the relative water quality
between sites. On average, the water temperature at Torquay Canal was 24.4°C (range
of 12.3 to 31.4°C), and at Sloan Cove, it was 23.5°C (10.4 to 23.5°C). The average salinity
at Torquay Canal was 25.6 g/kg (range of 18.1 to 25.6 g/kg), and at Sloan Cove, it was
27.9 g/kg (12.2 to 30.4 g/kg). However, a Mann-Whitney rank sum test revealed that
there was not a significant difference in temperature or salinity between sites (see Fig.
S1in the supplemental material).

Water quality at Torquay Canal was degraded compared with that of Sloan Cove (Table
1), with dissolved oxygen averaging 3.9 mg mL~' and 6.3 mg mL™", respectively.
According to a Mann-Whitney rank sum test, there were significant differences in total
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FIG 1 Location of sampling sites in the Delaware Inland Bays. 1, Torquay Canal; 2, Sloan Cove; (The maps were
created with ggmaps on R studio [45]).

dissolved phosphorus (TDP), PO, 73, and total dissolved nitrogen (TDN) between sites
(P < 0.05). TDP at Torquay Canal averaged 3.48 uM compared with that of 1.46 uM at
Sloan Cove, and PO, 3 levels averaged 1.68 uM at Torquay Canal compared with that of
0.81 uM at Sloan Cove, representing an ~2-fold higher concentration of these important
phosphorus constituents. There was also a 1.4-fold elevation of TDN at Torquay Canal,
which averaged 48.22 1M compared with that of 33.75 uM at Sloan Cove.

Harmful algal community dynamics. As a means of assessing relationships between
nutrients and HABs, phytoplankton analyses were performed at each site. The monthly distri-
butions of known HAB species at Torquay Canal and Sloan Cove are shown in Fig. 2 and 3.
At Torquay Canal, there was a frequent detection of phytoplankton blooms, including many
HAB species, such as Dinophysis acuminate, Chloromorum toxicum, Karlodinium veneficum,
and Heterosigma akashiwo. Gymnodinium spp. (combination of Gymnodinium auerolum and
Gymnodinium instratium), Scrippsiella trochoidea, and Prorocentrum minimum were also iden-
tified routinely. At Sloan Cove, we observed many of the same phytoplankton, although
potential toxin-forming species were of lesser prevalence and intensity and Dinophysis acu-
minata and Chloromorum toxicum were not detected.

According to the Mann-Whitney rank sum test, there was no significant difference
in HAB concentrations between sites and years. However, there was a significant differ-
ence in dinoflagellate biomass between sites, with a P value of 0.02 (Fig. 4). The total
dinoflagellate biomass was 1.4 x 10° ugC-L=! (maximum observed in June 2018) at
Torquay Canal and 3.7 x 10* ugC-L~" at Sloan Cove (maximum observed in August
2018). At Torquay Canal, the total K. veneficum biomass was 1.6 x 10 ©2 ugC-L~" (maxi-
mum observed in May 2017), and it was 133.6 ugC-L™" at Sloan Cove (maximum
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TABLE 1 Average distribution of environmental parameters in Rehoboth Bay water samples

from 2017 to 2018

Values by location

Sloan Cove Torquay Canal
Parameter Avg Min/max Avg Min/max P value?
Dinoflagellate biomass® 8.60 x 10"  0/7.20 x 10° 4.60 x 10> 0/2.80 x 10°  0.04
K. veneficum biomass® 1.40 0/6.00 x 10°  6.50 0/4.90 0.55
Temp® 23.50 10.40/31.60 24.40 12.30/31.40 0.77
Salinity? 27.90 12.20/3040  25.60 18.10/30.90  1.00 x 103
Dissolved oxygen® 6.40 3.70/8.80 3.90 1.26/6.19 1.10 X 1073
NH,*f 4.74 0.69/29.30 6.18 0.54/28.20 0.14
NO;™:NO,~* 1.35 0.32/4.99 1.80 0.18/6.06 0.35
NO,f 0.40 0.15/1.41 043 0.13/1.26 0.16
TDN/ 33.75 13.1/169.00  48.22 15.1/138.00  1.68 X 10*
PO f 0.81 0.31/1.68 1.68 0.29/7.34 8.99 X 104
TDPf 1.46 0.74/3.18 348 0.51/17.50 1.85 x 10~°
aBoldface entries indicate significant P values.
bugCL™".
<C.
9g/kg.
emg-L~".
fuM.

observed in May 2018). A Mann-Whitney rank sum test found no significant difference
in K. veneficum biomass (Table 1).

A principal-component analysis (PCA) was also performed to reveal overall relationships
within phytoplankton species and environmental factors and between phytoplankton
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FIG 2 Average distribution of dinoflagellates and raphidophytes in Torquay Canal. The lack of a bar signifies no detection of dinoflagellates or
raphidophytes.
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FIG 3 Average distribution of dinoflagellates and raphidophytes in Sloan Cove. The lack of a bar signifies no detection of dinoflagellates or raphidophytes.

groups and environmental variables. An analysis of Torquay Canal and Sloan Cove environ-
mental data showed an association between NO;:NO,, NO,~, and NH, " and an association
between TDN, TDP, and PO,3~ (Fig. 5). Additionally, there was an inverse relationship
between low salinity and higher nitrogen constituents. Phytoplankton data showed spe-
cific groupings between the following: Gymnodinium aureolum, K. veneficum, H. akashiwo,
and Mesodinium rubrum; C. subsalsa, C. toxicum, P. minimum, and cryptophytes; and D. acu-
minata and G. instratium (Fig. 5). Nutrient and phytoplankton PCA showed that there was
an association between cryptophytes, TDP, TDN, and PO,3>~ concentrations. K. veneficum,
H. akashiwo, and G. aureolum also were associated with M. rubrum concentrations (see Fig.
S2 in the supplemental material).

V. parahaemolyticus levels in water. Thermolabile hemolysin (tlh+) V. parahaemo-
lyticus was detected in 20/26 (77%) of water samples from Torquay Canal and in 22/29
(76%) water samples from Sloan Cove (Table 2 and 3). TIh+ V. parahaemolyticus levels
in Torquay Canal and Sloan Cove ranged from 0.97 to 3.04 log most probable number
(MPN) mL~". Pathogenic thermostable direct hemolysin-positive (tdh+) V. parahaemo-
lyticus was detected in 12/26 (46%) of water samples from Torquay Canal and 5/29
(17%) of water samples from Sloan Cove. Tdh+ V. parahaemolyticus concentrations in
Torquay Canal and Sloan Cove ranged from 0.47 to 1.63 log MPN mL~". According to a
Fisher exact test, Torquay Canal had a statistically significant higher number of tdh+ V.
parahaemolyticus than Sloan Cove with a P value of 0.01.

Pathogenic thermostable related hemolysin-positive (trh+) V. parahaemolyticus was
detected in 9/26 (35%) water samples from Torquay Canal and 5/29 (17%) water sam-
ples from Sloan Cove. Trh+ V. parahaemolyticus levels in Torquay Canal and Sloan
Cove ranged from 0.47 to 1.36 MPN mL~". As with tdh+ V. parahaemolyticus, Torquay
Canal was significantly higher in the number of trh+-positive V. parahaemolyticus com-
pared with Sloan Cove, with a P value of 0.02.
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FIG 4 Average biomass of dinoflagellate collected from Sloan Cove and Torquay Canal in 2017 to 2018. (a) Dinoflagellates of >20 um in size, including D.
acuminata, G. aureolum, G. instratium, S. trochoidea, and P. minimum. (b) Dinoflagellates of <20 um in size, including K. veneficum.

V. vulnificus levels in water. A V. vulnificus hemolysin A gene (VvhA+) was detected
in 15/26 (58%) water samples collected from Torquay Canal and 16/29 (55%) from Sloan
Cove. WhA+ V. vulnificus levels at Torquay Canal and Sloan Cove ranged from 0.50 to 4.64
log MPNmI~1. A Vibrio-correlated clinical gene (VcgC+) V. vulnificus was detected in 12/26
(46%) water samples from Torquay Canal and 6/29 (21%) from Sloan Cove. VcgC+ V. vulni-
ficus levels in Torquay Canal and Sloan Cove water samples ranged from 0.47 to 1.36 MPN
mL~". VcgC+ V. vulnificus-positive samples were significantly higher at Torquay Canal than
those at Sloan Cove with a P value of 0.03.

Comparison between years of V. parahaemolyticus and V. vulnificus. We also
compared the distribution of V. parahaemolyticus and V. vulnificus in water between
2017 and 2018, pooling data from each site. In 2017, samples were collected only
between July and October; thus, we pooled only data for these months for a compara-
tive analysis. In 2017, the highest levels of the tlh+ and tdh+ V. parahaemolyticus were
observed (Table 4), and there was a significant difference in the tlh+ and tdh+ levels
between these years (P values 0.003 and 0.038, respectively). The highest concentra-
tion of whA+ V. vulnificus in water samples was observed in August 2017, and the
highest concentration of vcgC + V. vulnificus was observed in July 2017. However,
there was no significant difference between the years (Fig. 6).

Correlation analysis of Vibrio spp. and nutrients. A correlation analysis of the
2017 to 2018 Torquay Canal and Sloan Cove nutrient and Vibrio data showed that at
Torquay Canal, total tlh + V. parahaemolyticus had a moderate positive correlation
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FIG 5 Principal-component analysis of environmental factors and phytoplankton species collected from April to October 2017 to 2018. An abbreviation
description is as follows: (a) Saln, salinity; Temp, temperature; DO, dissolved oxygen; (b) P.min, P. minimum; D.acu, D. acuminata; G.ins, G. instratium; G.aur,
G. aureloum; S.tro, S. trochoidea; C.sub, C. subsalsa; C.tox, C. toxicum; H.aka, H. akashiwo; Cry, Cryptomonads; K.ven, K. veneficum; and M.rub, M. rubrum.

with TDP, TDN, and PO4~3, with a coefficient value greater than 0.5 and a P value of
<0.05. Trh +V. parahaemolyticus had a moderate positive correlation with TDP with a
coefficient value greater than 0.5 and a P value of <0.05. At Sloan Cove, total V. vulnifi-
cus (vwhA+) had a positive correlation with NO;:NO,, with a coefficient value greater
than 0.5 and a P value of <0.05. All P values were corrected using a Benjamini and

Hochberg adjustment to avoid false positives.

Modeling the relationship between Vibrio spp., HABs, and environmental fac-
tors. We used a generalized linear model to determine which explanatory variables
best described the detection of V. parahaemolyticus (Table 5). Principal component 1
(PC1) of environmental factors (NO;:NO,, TDN, and PO4~3) contributed the most in

TABLE 2 Distribution of Vibrio spp., bloom species, and abiotic parameters in Torquay Canal

Variable No. positive/total Percent positive Min Max Avg

V. parahaemolyticus (tlh+)* 20/26 77 0.97 3.04 1.78

V. parahaemolyticus (tdh+)* 12/26 46 0.79 1.36 0.54

V. parahaemolyticus (trh+)* 9/26 35 0.48 1.36 0.388

V. vulnificus (vwhA+)? 15/26 58 0.50 2.40 1.16

V. vulnificus (vegC+)? 12/26 46 0.48 1.36 0.49
Dinophysis acuminata® 4/26 15 1.04 x 103 1.04 x 10° 450 x 103
Gymnodinium spp.? 14/26 54 1.04 x 103 2.14 x 10° 1.28 x 10%
Karlodinium veneficum® 4/26 15 2.08 x 103 5.20 x 10* 2.99 x 103
Scrippsiella trochoidea® 12/26 46 1.04 x 103 6.86 x 10* 5.16 x 103
Prorocentrum minimum?® 11/26 42 1.04 x 103 6.86 x 10* 543 x 10°
Heterosigma akashiwo® 5/26 19 1.04 x 10° 1.99 x 10* 8.52 x 10*
Chloromorum toxicum® 4/26 15 3.36 x 102 5.65 x 10° 142 x 10°
Temp© na 12.3 314 24.4
Salinity® na 18.1 309 25.6
Dissolved oxygen’ na 1.26 6.19 3.9

alog MPN mL™".

bCells L.

<C.

9na, not applicable.

eg/kg.

mglL™".
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TABLE 3 Distribution of Vibrio spp., bloom species, and abiotic parameters in Sloan Cove

Applied and Environmental Microbiology

Variable No. positive/total Percent positive Min Max Avg

V. parahaemolyticus (tlh+)* 22/29 76 1.36 3.04 1.73

V. parahaemolyticus (tdh+)* 5/29 17 0.47 1.63 0.20

V. parahaemolyticus (trh+)* 5/29 17 0.47 1.36 0.15

V. vulnificus (vwvhA+)® 16/29 55 0.97 4.64 0.96

V. vulnificus (vegC+)? 6/29 21 0.47 1.36 0.21
Dinophysis acuminata® 0/29 0 na na na
Gymnodinium spp.® 9/29 31 1.04 x 103 7.28 x 103 2.53 x 103
Karlodinium veneficum® 7/29 24 1.04 x 10% 5.02 x 10° 111 x 103
Scrippsiella trochoidea® 13/29 45 1.04 x 10° 832 x 10° 1.65 x 10*
Prorocentrum minimum?® 7/29 24 1.04 x 10® 7.28 x 10° 1.42 x 103
Heterosigma akashiwo® 3/29 10 2.08 x 103 6.24 x 103 3.47 x 102
Chloromorum toxicum® 0/29 0 na na na

Temp© na 10.4 31.6 235
Salinity na 12.2 304 27.9
Dissolved oxygen® na 3.7 8.8 6.4

alog MPN mL™".

blog cells L.

C.

9g/kg.

emgL™".

detecting total (tlh+) V. parahaemolyticus (P < 0.05) (Table 5). G. instratium contributed
the most in detecting (tdh+) V. parahaemolyticus (P < 0.05) (Table 6). We additionally
ran the model using trh+, vvhA+, and vcgC+, but there was no significant relationship
discovered (see Fig. S1 to S3 in the supplemental material).

DISCUSSION

Torquay Canal is a dead-end canal, which is common in residential communities
close to bays. They are poorly flushed and subject to anthropogenic inputs from
homes and other developed areas. Therefore, it was not surprising that its higher nutri-
ent levels and low dissolved oxygen were significantly different from those measured
at the well-flushed Sloan Cove. As dead-end canals are also conducive to harmful algal
bloom formation (8), these findings were consistent with a higher total dinoflagellate
biomass at Torquay Canal than that at Sloan Cove (Fig. 4).

Dinophysis acuminata has been found frequently at Torquay Canal, and favorable
growth is associated with elevated nitrogen constituents, particularly NH,* levels (15,
16), consistent with our data (Fig. 2). Additionally, this taxon is also an obligate mixo-
troph that must sequester chloroplasts from cryptophytes by ingesting ciliates (e.g.,

TABLE 4 Average distribution of Vibrio spp., phytoplankton, and abiotic parameters in
Rehoboth Bay water samples

Avg by yr
Variable 2017 2018 P value?
V. parahaemolyticus (tlh+)° 542.82 265.96 3.00 x 103
V. parahaemolyticus (tdh+)° 8.30 243 0.03
V. parahaemolyticus (trh+)° 8.17 3.46 0.18
V. vulnificus (vwhA+)? 188.60 138.68 0.89
V. vulnificus (vegC+)® 5.13 6.40 0.47
Phytoplankton© 27,630 48,538 0.05
Temp? 25.60 21.66 0.07
Salinity® 28.22 21.18 <1.0 x 1073
Dissolved oxygen’ 4.30 3.63 0.83
aBoldface entries indicate significant P values.
bMPN mL™".
ccellsL™.
a°C,
eg/kg.
mglL".
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FIG 6 Distribution of Vibrio spp. in the Delaware Inland Bays from 2017 to 2018. Shows bar plots of V. parahaemolyticus (tlh), V. vulnificus (vvha),

pathogenic (tdh+ and trh+) V. parahaemolyticus, and pathogenic (vegC+) V. vulnificus. The bar plots summarize means for Vibrio genes. Additionally,
standard errors bars were calculated using R studio.

July 2022 Volume 88 Issue 14 10.1128/aem.00356-22 9


https://journals.asm.org/journal/aem
https://doi.org/10.1128/aem.00356-22

Vibrios and Harmful Algal Species in Rehoboth Bay

TABLE 5 Model comparison of generalized linear models with Tlh as the response variable

Model no. Explanatory variable AICc® Delta wt® RMSE*
M6 Tlh ~ PC1ENVIY 101.1  0.00 0.226 0.968
M100 Tlh ~ N023 + PO, + TDP 101.3 0.24 0.200 0.898
M28 Tlh ~ PC1ENVI + HI® 101.9 0.81 0.234 0.943
M97 Tlh ~ N02:3 102.1 097 0.140 0.982
M29 Tlh ~ PC1ENVI + GIf 1024 1.26 0.187 0.949
M27 Tlh ~ PC1ENVI + HI + Gl 1029 1.84 0.140 0.919
M1 Tlh ~ PC1IENVI + PC2ENVI9 + PC1HAB" + PC2HAB' 1042 3.15 0.073 0.897
M94 Tlh ~ Sal 107.0 5.95 0.012 1.05
Null Tih ~1 107.2 6.12 0.016 1.09
M95 Tlh ~ Temp 1088 7.68 0.006 1.08
M31 Tih ~ Gl 109.1  8.01 0.005 1.09
M30 Tih ~ Hl 109.6 8.52 0.004 1.09
aAlCc, Akaike's information criterion. A lower AlCc indicates a better model.

bwt, weight.

‘RMSE, root-mean-square deviation.

dPrincipal component 1 of environmental variables.
eH. akashiwo.

1G. instratium.

9Principal component 2 of environmental variables.
hPrincipal component 1 of harmful algal species.
Principal component 2 of harmful algal species.

Mesodinium spp.) that have preyed on cryptophytes (17, 18). Interestingly, we did not
observe any M. rubrum or cryptophytes in 2018. Either D. acuminata ingested all avail-
able M. rubrum prey prior to our sampling dates in 2018 or D. acuminata can obtain
chloroplasts from other phytoplankton.

In June and September of 2017 at Torquay Canal, we also observed high levels of C.
subsalsa and H. akashiwo with concentrations ranging from 2.0 x 10° to 6.0 x 10° cells
L=". They are species found commonly in the Delaware Inland Bays (19) and can be
both mixotrophic and autotrophic. C. subsalsa blooms are known to co-occur with C.
toxicum in the Delaware Inland Bays (20, 21), as was as also seen in our PCA (Fig. 6).

Sloan Cove did not exhibit as high concentrations of HABs as in Torquay Canal,
likely due to the lower nutrient levels. G. aureolum, the most commonly reported
bloom-forming dinoflagellate in temperate waters (22, 23), was the major species
found throughout the 2-year study. HAB species, such as K. veneficum, were detected
but at low levels. PCA plots revealed associations between K. veneficum and M. rubrum,
which may be reflective of feeding on similar prey items, such as cryptophytes (24-26).
In 2017, we detected the presence of both C. subsalsa and H. akashiwo but not in 2018.

TABLE 6 Model comparison of generalized linear models with Tdh as the response variable

Model no. Explanatory variables AlCc Delta wt RMSE
M36 Tdh ~ GlI* 569 0.00 0339 0.506
M31 Tdh ~ PCIENVI® + GI 588 1.89 0.132 0.500
M32 Tdh ~ PCT1ENVI + PC2ENVIc + PCTHABY + PC2HAB® 59.0 203  0.123 0.461
M30 Tdh ~ N02:3 592 232 0.106 0.523
Null3 Tdh ~ 1 595 259 0.093 0.544
M35 Tdh ~ HIf 613 437 0.038 0.540
M34 Tdh ~ Temp 614 4.46 0.036 0.540
M27 Tdh ~ PC1ENVI + HI + Gl 615 459 0.012 0.500
M29 Tdh ~ PCT1ENVI + HI 615 4.62 0.034 0.500
M26 Tdh ~ PC1ENVI 61.6 465 0.033 0.541
M33 Tdh ~ Sal 61.8 490 0.029 0.541
M28 Tdh ~ N023 + PO4 + TDP 623 536 0.023 0.505

aG. instratium.

bPrincipal component 1 of environmental variables.
Principal component 2 of environmental variables.
9Principal component 1 of harmful algal species.
Principal component 2 of harmful algal species.

H. akashiwo.
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This finding is likely due to low concentrations of prey items (data not shown) (27, 28).
Despite that fewer HAB events occurred in Sloan Cove than those in Torquay Canal,
caution should be exercised and routine monitoring continued. Occasional blooms are
possible when a “window of opportunity” exists for certain species to outgrow compet-
itors and when there are few zooplankton grazers present (29).

The development of a site-specific Vibrio predictive model based on nutrients and
resident phytoplankton may be useful for evaluating water quality in oyster aquacul-
ture areas (2). When sampling sites were compared, similar concentrations of total V.
parahaemolyticus and V. vulnificus were recorded, despite differing nutrient and dis-
solved oxygen concentrations. Whether V. parahaemolyticus and V. vulnificus prefer dif-
ferent environmental conditions remains unclear. The influence of geographic location
is unclear. Some studies suggest that this is the case (30, 31), although we did not
observe a significant difference between sites, which is similar to other work (32, 33).
The levels of both species during the warmer months, though, were consistent with
those reported previously (34-36).

V. parahaemolyticus is a moderately halophilic bacterium (34, 37, 38) and was pres-
ent at higher levels in the higher salinity year of 2017 (Table 1), although the relation-
ship was weak (r = 0.032 and P = 0.11) A significant positive association was observed
between total V. parahaemolyticus and TDN, PO,~, and TDP (Fig. S3). Davis et al. also
observed a positive association between PO,~ and V. parahaemolyticus in developed
areas (34).

Limited work has explored what factors influence the presence of pathogenic strains of
V. parahaemolyticus and V. vulnificus. Previous studies have suggested that chlorophyll a
levels contribute to higher pathogenic V. parahaemolyticus (tdh+ and trh+) in the water
column (31, 39). This suggestion was consistent with our observations, where trh+ V. para-
haemolyticus was present in a higher prevalence and concentrations at Torquay Canal,
where there is a significantly higher HAB occurrence and biomass than those at Sloan
Cove. Additionally, we observed a positive association between trh+ V. parahaemolyticus
and TDP, which has not been reported previously. According to the generalized linear
model (Table 5), PC1 environmental variables that included temperature, dissolved oxy-
gen, salinity, TDN, PO,~, TDP, NO;:NO,, NO,~, and NH,*, contributed the most in the
detection of total tth+ V. parahaemolyticus. G. instratium contributed the most in the
detection of total tdh+ V. parahaemolyticus.

Observations from Japan (40) and the Atlantic Coast of the United States (41) have
shown that the prevalence of vcgC+ V. vulnificus can vary depending on the system. A
correlation between phosphate and vcgC+ V. vulnificus has been reported for the
Chesapeake Bay (42). We observed a weak correlation between total (vwvha+) V. vulnifi-
cus and phytoplankton, which included both dinoflagellates and raphidophytes. This
result was unexpected, as prior reports have suggested a strong relationship between
total V. vulnificus and both nutrients and HABs (43, 44). Thus, any relationship between
V. vulnificus and phytoplankton might be species specific and be influenced by specific
nutrients. Future studies will be necessary to derive these potential interactions.

Future studies in Rehoboth Bay should incorporate chlorophyll a data into model
development. Vibrio spp. are known to bind to the surface of dinoflagellates and raphido-
phytes (7) and degrade their surface polymers, such as chitin and plant/algal polysaccha-
rides. It is also possible that pathogenic Vibrio spp. are more abundant in environments
where there is enhanced competition with other marine bacteria and phytoplankton for
nutrients. In conclusion, this study sought to characterize the relatedness between Vibrio
spp. and HABs, as well as determine the influence of nutrients on pathogenic Vibrio spp.
and HAB abundance in Rehoboth Bay. We discovered that although the total numbers of
Vibrio spp. are similar between Torquay Canal and Sloan Cove, potentially pathogenic
Vibrio spp. are more likely to be found at Torquay Canal. Thus, total Vibrio counts at a loca-
tion may not be sufficient for the accurate prediction of pathogenic potential when con-
sidering the placement of aquaculture sites.
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MATERIALS AND METHODS

Sample collection and phytoplankton enumeration. A total of 55 water samples were collected
from Rehoboth Bay in 2017 to 2018, including 29 from Sloan Cove and 26 from Torquay Canal for vibrio
and phytoplankton analysis. Surface water samples were collected weekly in 1-L amber glass bottles at
Torquay Canal (site 1) and Sloan Cove (site 2). These areas were chosen based on their proximity to oys-
ter aquaculture sites, differences in water quality based on the State of the Delaware Inland Bays report,
and accessibility by vehicle (1). Station depth ranged from 5 to 7 feet, and surface temperature, salinity,
and dissolved oxygen were collected using a YSI 85 (Yellow Spring Instrument Co., Yellow Springs, OH).
At site 1, Torquay Canal water samples were collected from July to October in 2017 and April to October
in 2018. At site 2, Sloan Cove water samples were collected from May to October in 2017, and April to
October in 2018 (Fig. 1) (45). An additional 50 mL of water was collected from all sites and preserved in
Lugol's iodine solution for phytoplankton identification and enumeration via microscopy using a Zeiss
IM35 inverted microscope with phase contrast and bright field illumination (46).

The estimated bio-volume of all dinoflagellates was obtained using geometric shape equations from
the Baltic Sea environmental proceedings no. 106 and converted to biomass using a conversion factor
of 0.760 pgCm 2 (cellular carbon) (47). Dinoflagellate biomass as calculated included D. acuminata, G.
aureolum, G. instratium, S. trochoidea, and P. minimum. The biomass of K. veneficum was calculated sepa-
rately because of its small size compared with other dinoflagellates in this study.

Quantification of V. parahaemolyticus and V. vulnificus. Water samples were also processed for V.
parahaemolyticus and V. vulnificus abundance using the three-tube MPN method following procedures
described in reference 48. Totals of 100 mL, 10 mL, 1 mL, 100 uL, 10 uL, and 1 ul of undiluted sample
were inoculated in triplicate into 10 mL of alkaline peptone water (APW) broth and incubated overnight
at 35°C.

Vibrio sp. analysis using real-time PCR methods targeted the species-specific gene thermolabile hemoly-
sin (tlh) to confirm the abundance of V. parahaemolyticus and the species-specific gene Vibrio vulnificus he-
molysin A (vwha) to confirm the abundance of V. vulnificus in water. Thermostable direct hemolysin (tdh) and
thermostable related hemolysin (trh) were targeted to determine the presence of virulence genes in V. para-
haemolyticus. Virulence correlated gene (vcgC) was targeted to determine the presence of the virulence gene
in V. vulnificus. Primers, probes, and internal controls were as described previously (49-52).

Real-time PCR was conducted using iTaq universal supermix (Bio-Rad Laboratories, Hercules, CA), as
described (51). Real-time PCR cycling was conducted using a Bio-Rad CFX96 real-time system with an ini-
tial denaturation/polymerase activation of 95°C for 180 sec, followed by 45 cycles of 95°C for 5 sec, and
an annealing temperature of 62°C for 45 sec (53, 54).

Nutrient analysis. A total of 120-mL water samples from both sites were collected for nutrient anal-
ysis measurements for 2017 and 2018. Water samples were filtered through a Millipore 0.2-um mixed
cellulose ester membrane, and filtrates were stored at -80°C. Concentrations of total dissolved nitrogen
(TDN), total dissolved phosphorus (TDP), nitrate/nitrite (NO;:NO,), nitrite (NO,-), ammonium (NH,*), and
ortho-phosphate (PO,3>") were analyzed by the Horn Point Analytical Lab in Cambridge, Maryland, using
a Technicon autoanalyzer Il and NAP software (55, 56).

Statistical analysis. All Vibrio sp. and harmful algal counts were log transformed, and the differences
between HABs, Vibrio spp., nutrients, biomass, and environmental parameters were evaluated using a
Mann-Whitney rank sum test. A Fisher exact test was used to determine if there was a difference in the
number of occurrences for and HABs at each site. The Ggplot2 package in R studio was used to generate
a visual representation of the distribution of HABs, Vibrio spp. and environmental parameters. A
Spearman correlation test and a Benjamini and Hochberg P value adjustment were used to assess the
association between Vibrio spp., nutrients, HABs, and environmental parameters. Correlograms were
generated using the Corrgram software package in R. Harmful algal species were transformed using
Hellinger, and environmental variables were standardized using Z-scoring for principal component anal-
ysis (PCA). A visual representation of PCA was used to determine the relationship between environmen-
tal factors and to narrow down specific groups of harmful algal species to use in our model. For HAB
PCA, Chloromorum toxicum, Scrippsiella sp., and Gymnodinium instratium contributed over 14% in PCA1
and Karlodinium veneficum and Heterosigma akashiwo contributed over 25% in PCA2. For Environmental
PCA, PO, 3, TDP, and TDN contributed over 18% in PCA1, and NO, ™ and NO,:NO, contributed over 20%
in PCA2.

A generalized linear model was used to describe the relatedness between Vibrio spp., environmental
variables, and harmful algal species. To simplify the model, principal component 1 of environmental var-
iables was used in the model instead of each individual variable. H. akashiwo and Gyrodinium instriatum
were chosen as representatives for the groups that were formed in the PCA plots because these two
species were found regularly. MuMIn package in R was used to calculate Akaike information criterion
(AICc) to rank the models. The response variable is tlh + V. parahaemolyticus, and the fixed variables
were principal component 1 of environmental variables, principal component 2 of environmental varia-
bles, principal component 1 of harmful algal species, principal component 2 of harmful algal species,
and H. akashiwo and G. instratium concentrations. Models included both abiotic and biotic variables. All
analyses were conducted using R studio 3.3.0 (57).
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